Less Severe Synovitis in Patients with Knee Osteoarthritis is Associated with Higher Self-Reported Pain Intensity 12 Months After Total Knee Arthroplasty- An Exploratory Cohort Study.

Copyright © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ
Annals of the Rheumatic Diseases. 2019 June;78(2)_suppl. doi: 10.1136/annrheumdis-2019-eular.5695

Abstract

BACKGROUND:
Synovitis is a pain generator in patients with osteoarthritis and associated with upregulation of pro-inflammatory cytokines, which have been found to lead to pain sensitivity and worse self-reported pain(1).

OBJECTIVES:
This study aimed to investigate the association between pre- and perioperative synovitis from imaging and histology and self-reported pain 12 months after total knee arthroplasty (TKA).

METHODS:
Preoperative synovitis was assessed from MRI data of the knee by 11 point synovitis score a.m Guermazi (2) using contrast enhanced MRI (CE-synovitis) and heuristic time intensity curve analysis of the dynamic contrast enhanced MRI (DCE-MRI) data using the DYNAMIKA® software (Image Analysis group, London) providing Dynamic Enhanced MR Quantification (DEMRIQ) Indices (3). Perioperative synovitis was also assessed from biopsies of the synovium in 6 predefined places graded histologically a.m Krenn (4). Worst pain within the last 24-hours (visual analog scale, VAS, 0-100) was assessed before and 12 months after TKA. Patients were divided into a low-pain (VAS≤30) and a high-pain (VAS>30) group based on 12-months postoperative VAS.

RESULTS:
Twenty-six patients had full pre- and postoperative data and were analysed. The high-pain group had significantly lower CE-synovitis (P=0.03), DCE-MRI inflammation indices (DEMRIQ-inflammation) (P<0.03) and a trend towards lower histologically assessed synovitis grades (P=0.077) compared to the low-pain group at baseline. Preoperative synovitis scores were also inversely correlated with pain 12-months after TKA, CE-synovitis (R = – 0.455, P = 0.022) and DCE-MRI inflammation (R = -0.528, P = 0.007), indicating that more severe preoperative synovitis is associated with less severe pain at 12-months.

CONCLUSION:
Higher preoperative synovitis scores are associated with less postoperative pain 12-months after TKA. Further, correlation analysis revealed that less severe preoperative synovitis was associated with worse pain 12-months after TKA, suggesting that CE and DCE-MRI synovitis quantification could be used as imaging markers for prediction of good surgical outcomes.

Magnetic Resonance Imaging Tenosynovitis and Osteitis are Independent Predictors of Radiographic and MRI Damage Progression in Rheumatoid Arthritis Patients In Clincial Remission

Copyright © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ
Annals of the Rheumatic Diseases. 2019 June;78(2)_suppl. doi: 10.1136/annrheumdis-2019-eular.2006

Abstract

BACKGROUND:
Progression of structural joint damage occurs in 20-30 % of patients with rheumatoid arthritis (RA) in clinical remission1. Magnetic resonance imaging (MRI)-detected synovitis and in particular osteitis/bone marrow edema (BME) are known predictors of structural progression in both active RA and in remission, but the predictive value of adding MRI tenosynovitis assessment as potential predictor in patients in clinical remission has not been investigated.

OBJECTIVES:
To investigate the predictive value of baseline MRI inflammatory and damage parameters on 2 year MRI and X-ray damage progression in an RA cohort in clinical remission, following MRI and conventional treat-to-target (T2T) strategies.

METHODS:
200 RA patients in clinical remission (DAS28-CRP<3.2 and no swollen joints) on conventional DMARDs, included in the randomized IMAGINE-RA trial2 (conventional DAS28 + MRI-guided T2T strategy targeting absence of BME vs conventional DAS28 guided T2T strategy) had baseline and 2 years contrast-enhanced MRIs of the dominant wrist and 2nd-5th MCP joints and X-rays of hands and feet performed, which were evaluated with known chronology by two experienced readers according to the OMERACT RAMRIS scoring system and Sharp/van der Heijde method, respectively.

The following potentially predictive baseline variables: MRI BME, synovitis, tenosynovitis, MRI and X-ray erosion and joint space narrowing (JSN) score, CRP, DAS28, smoking status, gender, age and patient group were tested in univariate logistic regression analyses with 2-year progression in MRI combined damage score, Total Sharp Score (TSS), and MRI and X-ray JSN and erosion scores as dependent variables. Variables with p<0.1, age, gender and patient group were included in multivariable logistic regression analyses with backward selection.

RESULTS:
Based on univariate analyses MRI BME, synovitis, tenosynovitis, x-ray erosion and JSN, gender and age were included in subsequent multivariable analyses. Independent MRI predictors of structural progression were BME (MRI progression) and tenosynovitis (MRI and X-ray progression), MRI combined damage score: sum score of MRI erosion and JSN scores.

CONCLUSION:
This trial is the first to report that MRI tenosynovitis independently predicts both X-ray and MRI damage progression in RA patients in clinical remission. Further studies are needed to confirm MRI-determined tenosynovitis as predictor of progressive joint destruction in RA clinical remission.

Impact of a Magnetic Resonance Imaging-Guided Treat-to-Target Strategy on Disease Activity and Progression in Patients with Rheumatoid Arthritis (The IMAGINE-RA Trial): Study Protocol for a Randomized Controlled Trial.

Copyright © Author(s) (or their employer(s)) 2015.
Trials. 2015 Apr;7(178)_suppl doi: 10.1186/s13063-015-0693-2
Trial registration: http://www.ClinicalTrials.gov identifier: NCT01656278 (5 July 2012)

Abstract

BACKGROUND:
Rheumatoid arthritis (RA) is a chronic, progressive joint disease, which frequently leads to irreversible joint deformity and severe functional impairment. Although patients are treated according to existing guidelines and reach clinical remission, erosive progression still occurs. This demonstrates that additional methods for prognostication and monitoring of the disease activity are needed. Bone marrow edema (BME) detected by magnetic resonance imaging (MRI) has proved to be an independent predictor of subsequent radiographic progression. Guiding the treatment based on the presence/absence of BME may therefore be clinically beneficial. We present the design of a randomized controlled trial (RCT) aiming to evaluate whether an MRI-guided treatment strategy compared to a conventional treatment strategy in anti-CCP-positive erosive RA is better to prevent progression of erosive joint damage and increase the remission rate in patients with low disease activity or clinical remission.

METHODS/DESIGN:
The study is a non-blinded, multicenter, 2-year RCT with a parallel group design. Two hundred anti-CCP-positive, erosive RA patients characterized by low disease activity or remission, no clinically swollen joints and treatment with synthetic disease-modifying antirheumatic drugs (DMARDs) will be included. Patients will be randomized to either a treatment strategy based on conventional laboratory and clinical examinations (control group) or a treatment strategy based on conventional laboratory and clinical examinations as well as MRI (intervention group). Treatment is intensified according to a predefined treatment algorithm in case of inflammation defined as a disease activity score (DAS28) >3.2 and at least one clinically swollen joint (control and intervention groups) and/or MRI-detected BME (intervention group only). The primary outcome measures are DAS28 remission (DAS28 < 2.6) and radiographic progression (Sharp/vdHeijde score).

DISCUSSION:
The perspectives, strengths and weaknesses of this study are discussed.

Osteoarthritis Phenotypes and Novel Therapeutic Targets.

Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Biochemical Pharmacology. 2019 Jul;37 doi: 10.1016/j.bcp.2019.02.037. Epub 2019 Mar 1.

Abstract

The success of disease-modifying osteoarthritis drug (DMOAD) development is still elusive. While there have been successes in preclinical and early clinical studies, phase 3 clinical trials have failed so far and there is still no approved, widely available DMOAD on the market. The latest research suggests that, among other causes, poor trial outcomes might be explained by the fact that osteoarthritis (OA) is a heterogeneous disease with distinct phenotypes. OA trials might be more successful if they would address and target a specific phenotype. The increasing availability of advanced techniques to detect particular OA characteristics expands the possibilities to distinguish between such potential OA phenotypes. Magnetic resonance imaging is among the key imaging techniques to stratify and monitor patients with changes in bone, cartilage and inflammation. Biochemical markers have mainly used as secondary parameters and could further delineate phenotypes. Moreover, post-hoc analyses of trial data have suggested the existence of distinct pain phenotypes and their relevance in the design of clinical trials. Although ongoing work in the field supports the concept of OA heterogeneity, this has not yet resulted in more effective treatment options. This paper reviews the current knowledge about potential OA phenotypes and suggests that combining patient clinical data, quantitative imaging, biochemical markers and utilizing data-driven approaches in patient selection and efficacy assessment will allow for more successful development of effective DMOADs.

Imaging in Rheumatoid Arthritis: The Role of Magnetic Resonance Imaging and Computed Tomography.

Abstract

In suspected and diagnosed rheumatoid arthritis (RA), magnetic resonance imaging (MRI) allows detection of all relevant pathologies, such as synovitis, tenosynovitis, bone marrow edema (osteitis), bone erosion and cartilage damage. MRI is more sensitive than clinical examination for monitoring disease activity (i.e., inflammation) and more sensitive than conventional radiography and ultrasonography for monitoring joint destruction. In suspected RA, MRI bone marrow edema predicts development of RA, and in early RA patients, it predicts subsequent structural damage progression. CT is the standard reference imaging modality for visualizing bone damage, including bone erosions in RA, but lacks sensitivity for soft-tissue changes, including synovitis and tenosynovitis. CT has a minimal role in RA clinical trials and practice, except in selected patients where MRI is contraindicated or not available or if crystal arthritis such as gout or pseudo-gout is suspected. MRI has documented utility in diagnosis, monitoring and prognostication of patients with RA and is increasingly used for these purposes in clinical practice and particularly clinical trials.

MRI Findings of Rapidly Progressive Hepatocellular Carcinoma.

Copyright © Copyright 2010 Elsevier Inc. All rights reserved.
Magnetic Resonance Imaging. 2010 Jul;28(6) doi: 10.1016/j.mri.2010.03.005. Epub 2010 Apr 27.

Abstract

PURPOSE:
The purpose of this study is to determine the magnetic resonance imaging (MRI) and patient characteristics in subjects with hepatocellular carcinoma (HCC) that exhibit rapid progression.
MATERIALS AND METHODS:
In this unblinded retrospective study, initial and follow up MR images were reviewed, before and after rapid progression of HCC, respectively. Rapid progression was defined as a lesion <3 cm which exhibited >3 cm increase in one year or 2 cm increase in 6 months. Patient characteristics and MRI findings were determined using clinical information from the institution clinical information system and records from the Radiology and Pathology Departments, Hepatology Division and Liver Transplant Service of the Department of Medicine.
RESULTS:
Seven individuals were identified with HCC that showed rapid progression. Five of the patients had underlying hepatitis C, one had alcoholic hepatitis, and one had immunosuppression due to liver transplantation. On initial MRI, six patients had early intense ring enhancing lesions, which rapidly progressed in size. Five patients died within 6 months, one within 1 year after progression despite treatment. Six of the seven patients also had multiple other liver nodules on initial MRI; those that showed ring enhancement rapidly progressed but those without, did not show rapid progression.
CONCLUSION:
Patients with rapidly progressive HCC had underlying hepatitis C and intense ring enhancement on initial MRI. This group of patients should be evaluated further to determine if they might benefit from early intervention.

Voxel-wise correlation of PET/CT with multiparametric MRI and histology of the prostate using a sophisticated registration framework.

OBJECTIVES:

To develop a registration framework for correlating positron emission tomography/computed tomography (PET/CT) images with multiparametric MRI (mpMRI) and histology of the prostate, thereby enabling voxel-wise analysis of imaging parameters.

PATIENTS AND METHODS:

In this prospective proof-of-concept study, nine patients scheduled for radical prostatectomy underwent mpMRI and PET/CT imaging prior to surgery. One had PET imaging using 18 F-fluoromethylcholine (FCH), five using 68 Ga-labelled prostate-specific membrane antigen (PSMA)-HBED-CC (PMSA-11) and three using a trial 68 Ga-labelled THP-PSMA tracer. PET/CT data was co-registered with mpMRI via the CT scan and an in vivo 3D T2w MRI, and then co-registered with ground truth histology data using ex vivo MRI of the prostate specimen. Maximum and mean standardised uptake values (SUVmax and SUVmean) were extracted from PET data using tumour annotations from histology, and Kolmogorov-Smirnov tests were carried out to compare between tumour and benign voxel values. Correlation analysis was performed between mpMRI and PET SUV tumour voxels using Pearson’s correlation coefficient and R squared statistics.

RESULTS:

PET/CT data from all nine patients were successfully registered with mpMRI and histology data. SUVmax and SUVmean ranged from 2.21 to 12.11 and 1.08 to 4.21, respectively. All patients showed the PET SUV values in benign and tumour voxels were from statistically different distributions. Correlation analysis showed no consistent trend between the T2w or ADC values and PET SUV. However, parameters from DCE MRI including the maximum enhancement (ME), volume transfer constant Ktrans and the initial area under the contrast agent concentration curve (iAUGC60) showed consistent positive correlations with PET SUV. Furthermore, R2* values from BOLD MRI showed consistent negative correlations with PET SUV voxel values.

CONCLUSION:

We have developed a novel framework for registering and correlating PET/CT data at a voxel-level with mpMRI and histology. Despite registration uncertainties, perfusion and oxygenation parameters from DCE MRI and BOLD imaging showed correlations with PET SUV. Further analysis will be performed on a larger patient cohort to quantify these proof-of-concept findings. Improved understanding of the correlation between mpMRI and PET will provide supportive information for focal therapy planning of the prostate.

MRI findings of posttraumatic intrahepatic vascular shunts.

Purpose

To describe the features of posttraumatic intrahepatic vascular shunts (PIVS) as seen on MRI.

Materials and Methods

A search was performed for patients with MRI features compatible with PIVS in the Abdominal MRI databases between January 2002 and March 2008. This study was approved by our institutional review board. All patients were imaged using a protocol that included noncontrast T1‐weighted and T2‐weighted images, and postgadolinium gradient‐echo images.

Results

Eleven patients (eight men, three women; mean age 55.36 years; range 43–77 years) were identified with PIVS. The following imaging features were observed: dilation of afferent and efferent vessels (five patients), transient hepatic parenchymal blush in a watershed distribution (11 patients), and early opacification of efferent vessels (11 patients).

Conclusion

Patients with PIVS exhibit features that are distinctive for this entity and include: dilatation of efferent and afferent vessels, transient parenchymal blush, and early opacification of efferent vessels.

MR Imaging: Sequences we use and why.

Typically there are at least 8 different sets of images in a body magnetic resonance imaging (MRI) study, which can bewilder the radiologist who may be comfortable with looking at only 1 set of images required by computed tomography (CT). The standard MR sequences obtained are: noncontrast T1-weighted (T1W) in-phase, out-of-phase and fat-suppressed images, and T2-weighted (T2W) fat- and non-fat-suppressed images. Other standard sequences include contrast-enhanced T1W sequences imaged during the hepatic arterial dominant phase, early hepatic venous phase and the interstitial phase (Figure 1). This review describes the core data interpretation from these different imaging sets to raise the comfort level for image interpretation of abdominal MRI studies.

MR imaging findings of small bowel hemorrhage: two cases of mural involvement and one of perimural.

Purpose

To demonstrate the MR appearance of small bowel wall hemorrhage.

Materials and Methods

A search was performed of the clinical information system (CIS) and the abdominal MRI databases of our institution for patients diagnosed with bowel hemorrhage on MRI between January 1, 2000, and July 31, 2008. All patients were imaged using a protocol that included noncontrast T1‐ and T2‐weighted images and postgadolinium gradient echo images.

Results

Two male patients, 44 and 55 years of age, were identified with small bowel mural hemorrhage, one in the duodenum and one in the jejunum. A third patient, a 66‐year‐old man, was identified with perimural hematoma. The following imaging features were observed: for mural hemorrhage, mural‐based increased signal intensity (SI) in the bowel wall on fat suppressed T1‐weighted images, variable increased SI on T2‐weighted images and no appreciable enhancement on the postcontrast T1‐weighted image; perimural hemorrhage exhibited normal thickness low SI wall on T2‐weighted single shot images, with ill‐defined material surrounding the bowel. SI features of this material, was similar to mural‐based abnormality.

Conclusion

In two patients with small bowel wall hemorrhage, the wall showed increased thickness with increased SI on noncontrast T1‐weighted images and lack of enhancement on postgadolinium images. Perimural hematoma showed an intact normal thickness wall that was low SI on T2 with surrounding material that was high SI on noncontrast T1‐weighted images and did not enhance.