CAN DIFFUSION TENSOR MR IMAGING IDENTIFY GLIOMA IDH MUTATION STATUS?

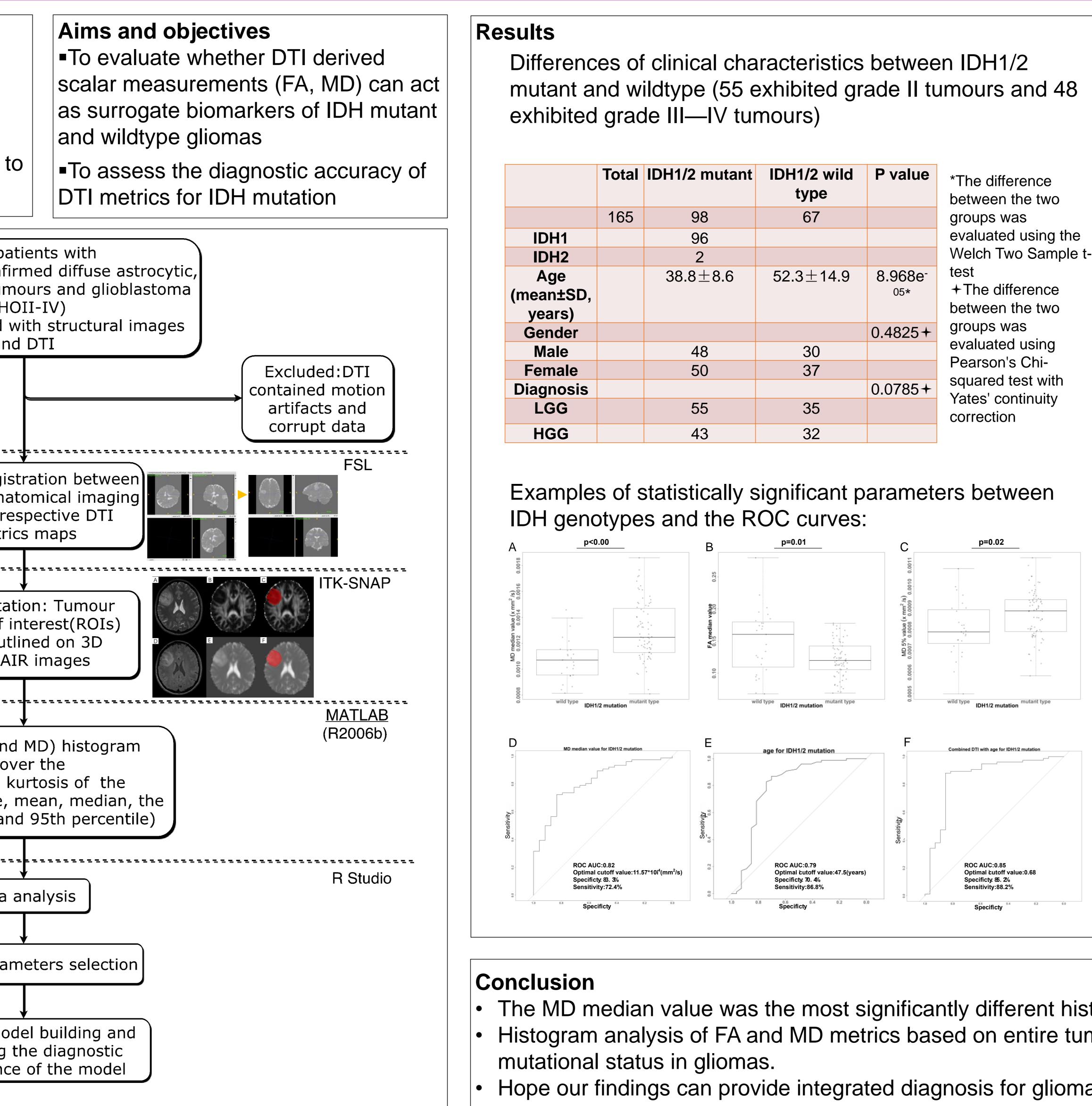
Sotirios Bisdas^{1,2} *Jialin Yuan*^{1,2}, Laura Mancini², Diana Roettger³

Institute of Neurology, University College London, UK¹ Department of Neuroradiology, University College London Hospitals NHS Trust, London, UK² Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, China³ Image Analysis Group, London, UK⁴

Background

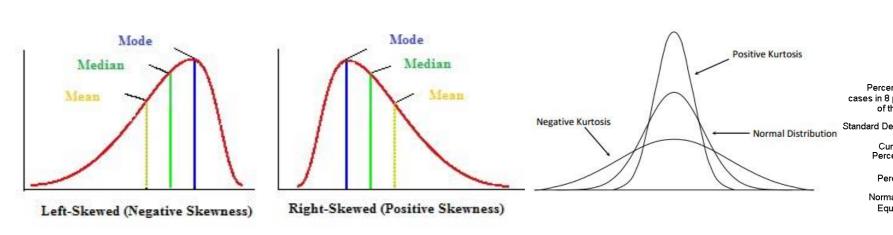
The isocitrate dehydrogenase (IDH) mutation status is a recognized molecular biomarker for glioma stratification. Glioma clinical management benefits from advanced MRI sequences including diffusion tensor imaging (DTI). For first time, we investigated the diagnostic power of DTI to characterize gliomas with respect to IDH mutation status.

Methodology


This retrospective study examines the accuracy of DTI for staging of IDH mutant (98) and wild-type (67) gliomas in a treatment-naïve setting. The tumour was manually segmented in the MRI and two DTIderived parameters, namely fractional anisotropy (FA) and mean diffusivity (MD) values were calculated and plotted as histograms. Thresholds for the optimal diagnostic performance in terms of IDH mutation were sought in selected histogram parameters of FA and MD maps using parametric and non-parametric tests as well as receiver operating characteristic curve analysis.

Key References:

Hempel, Johann-Martin, Sotirios Bisdas, Jens Schittenhelm, Cornelia Brendle, Benjamin Bender, Henk Wassmann, Marco Skardelly, et al. "In Vivo Molecular Profiling of Human Glioma Using Diffusion Kurtosis Imaging." Journal of Neuro-Oncology 131, no. 1 (January 1, 2017): 93-101. doi:10.1007/s11060-016-

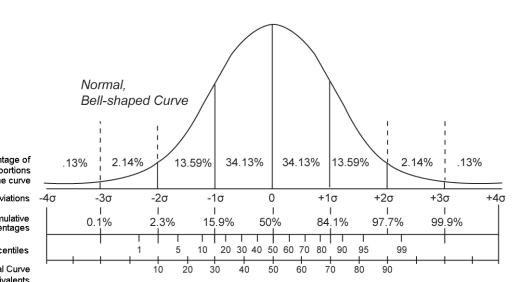

Tan, W. L., W. Y. Huang, B. Yin, J. Xiong, J. S. Wu, and D. Y. Geng. "Can Diffusion Tensor Imaging Noninvasively Detect IDH1 Gene Mutations in Astrogliomas? A Retrospective Study of 112 Cases." American Journal of Neuroradiology 35, no. 5 (May 1, 2014): 920-27. doi:10.3174/ajnr.A3803. Xiong, Ji, Wen-Li Tan, Jia-Wei Pan, Yin Wang, Bo Yin, Jun Zhang, and Dao-Ying Geng. "Detecting Isocitrate Dehydrogenase Gene Mutations in Oligodendroglial Tumors Using Diffusion Tensor Imaging Metrics and Their Correlations with Proliferation and Microvascular Density." Journal of Magnetic Resonance Imaging: JMRI 43, no. 1 (January 2016): 45–54. doi:10.1002/jmri.24958.

adult pa (i)histologically conf oligodendroglial tur (WH (ii)MRI performed ar
Rigid co-regi T2/FLAIR and and the re metr
Segmenta regions of were ou T2/FLA
DTI maps (FA an data extraction o ROIs(skewness, histogram curve, 5th, 10th,90th ar
data
feature para
potential mo evaluating performanc

al	IDH1/2 mutant	IDH1/2 wild type	P value			
5	98	67				
	96					
	2					
	38.8±8.6	52.3±14.9	8.968e⁻ ^{05*}			
			0.4825+			
	48	30				
	50	37				
			0.0785+			
	55	35				
	43	32				

Differences of histogram parameters derived from DTI maps between IDH mutant and wildtype group

	Mean value		P value
	IDH mutant(76) (MD: mm²/s)	IDH wild-type(27) (MD: mm ² /s)	
MD skewness≭	-2.00 <u>+</u> 0.79	0.64 ± 0.95	<0.00
MD mean	(12.87±1.98) x 10 ⁻⁴	(11.73 <u>+</u> 2.72) x 10 ⁻⁴	<0.00
MD median	(12.94 <u>+</u> 2.22) x 10 ⁻⁴	(11.53 <u>+</u> 3.27) x 10 ⁻⁴	<0.00
MD 5%*	(8.71±1.32) x 10 ⁻⁴	(8.00±1.29) x 10 ⁻⁴	0.02
MD 10%≭	(9.56±1.35) x 10 ⁻⁴	(8.61±1.35) x 10 ⁻⁴	0.01
MD 90%	(16.04 <u>+</u> 2.78) x 10 ⁻⁴	(15.25 <u>+</u> 4.25) x 10 ⁻⁴	0.04
FA mean	0.15 <u>+</u> 0.03	0.17 <u>+</u> 0.04	0.03
FA median	0.13 <u>+</u> 0.03	0.15 <u>+</u> 0.05	0.01


mutational status?

• The MD median value was the most significantly different histogram parameter when comparing IDH1/2 mutant and wildtype gliomas. • Histogram analysis of FA and MD metrics based on entire tumour volume may serve as surrogate biomarkers for distinguishing IDH

• Hope our findings can provide integrated diagnosis for gliomas in a non invasive way in future clinical practice.

2638PD

★ Data showed normal distribution (Welch two-sample *t*-test)

For parameters without \star , either one or both groups no sign: either one or both group of data showed no normal distribution, and the difference between the two groups was evaluated using a Wilcoxor rank sum test with continuity correction.

Why different performance in FA and MD in predicting IDH

FA is a summary reflection of microstructural integrity, which is sensitive to microstructural changes rather than what type of change. While MD is sensitive to cellularity, oedema, and necrosis, which can reflect the heterogeneities of the tumour.

In our study, a large part of the tumours were involved in the cortex, which may attenuate the power of identifying difference using FA, but MD value is very similar for both GM and WM, therefore tumour's location will not affect the MD value.