Radiomics in Clinical Trials – The Rationale, Current Practices, and Future Considerations

Radiomics involves deep quantitative analysis of radiological images for structural and/or functional information. – It is a phenomic assessment of disease to understand lesion microstructure, microenvironment and molecular/cellular function. – In oncology, it helps us accurately classify, stratify and prognosticate tumors based on if, how and when they transform, infiltrate, involute or metastasize, – Utilizing radiomics in clinical trials is exploratory, and not an established end-point. – Integrating radiomics in an imaging-based clinical trials involves a streamlined workflow to handle large datasets, robust platforms to accommodate machine learning calculations, and seamless incorporation of derived insights into outcomes matrix.

Reporter Gene Imaging and its Role in Imaging-Based Drug Development.

This abstract presents how RGI can be used in drug development for pharmacodynamic and pharmacokinetic assessment of cellular, gene, oncolytic viral and immunotherapeutic approaches using MRI, PET, SPECT, Ultrasound, Bioluminescence and Fluoroscence.  Some of the teaching points include further insight into RGI imaging probes that can be direct, indirect or activable; range from enzymes, protein receptors and cell membrane transporters and how RGI qualitatively and quantitatively assesses cell targeting, transfection, protein expression and intracellular processes.

Multi-Parametric MRI As Supplement to mRANO Criteria for Response Assessment to MDNA55 in Adults with Recurrent or Progressive Glioblastoma.

Copyright © 2019 by American Society of Clinical Oncology
Journal of Clinical Oncology May 2019; 37(15)_suppl DOI: 10.1200/JCO.2019.37.15_suppl.e13559

Abstract

BACKGROUND:
Modified response assessment in neuro-oncology (mRANO) criteria are widely used in GBM but seem insufficient to capture Pseudoprogression (PsP), which occurs due to extensive inflammatory infiltration, increased vascular permeability, tumor necrosis and edema. mRANO criteria recommend volumetric response evaluation using contrast-enhanced T1 subtraction maps for identifying PsP. Our approach incorporates multi-parametric MRI biomarkers to unravel the true PsP from recurrence or distinguish Pseudo Response (PsR) – following anti-VEGF agents – from delayed (immuno)response.
METHODS:
Multiple time-points MRI (18-24h after convection-enhance delivery of the anti-IL4-R agent MDNA55, then at 30-day intervals) was utilized to determine response. Multi-parametric MRI biomarkers analyzed included (1) 3D-FLAIR-T2-based tumor volume assessment reflecting edema, necrosis and tumor infiltration; (2) 3D-gadolinium-enhanced-based tumor volume estimation reflecting active tumor infiltration, neo-angiogenesis and disrupted blood brain barrier; (3) Dynamic susceptibility contrast-based relative cerebral blood volume (rCBV) measurements for estimation of the vascular tumour properties; and (4) Diffusion weighted imaging – Apparent diffusion coefficient measurements that assess interstitial edema, tumor cellularity and ischemic injury.
RESULTS:
We demonstrate similar imaging phenotypes on conventional FLAIR-T2- and enhanced T1- MR images among different disease states (PsP vs true progression, PsR vs and immuno-response) and describe the perfusion and diffusion MRI biomarkers that improve response staging including PsP masking true progression, PsP masking clinical response, early progression with delayed response, and differentiation between true and PsR. The results are compared with the mRANO-based assessments for concurrence.
CONCLUSION:
Incorporating multi-parametric MRI measurements to determine the complex underlying tissue processes enables a better assessment of PsP, PsR and delayed tumour response, and can supplement mRANO-based response assessments in GBM patients undergoing novel immunotherapies.

Development of a Multi-Modality Imaging Approach to evaluate Lupus Nephritis and initial results.

© Author(s) (or their employer(s)) 2019. Published by BMJ.
Annals of the Rheumatic Diseases. 2019 June;78(2)

Abstract

BACKGROUND:
Lupus nephritis (LN) remains a significant cause of morbidity and mortality in subjects with Systemic Lupus Erythematosus (SLE). The gold standard for evaluation of LN remains the kidney biopsy, whereas renal function is usually evaluated by eGFR and urinary protein:creatinine ratio. More effective and sensitive methodology is needed to assess LN and also the response to treatment. Functional imaging of the kidney using quantitative techniques has great potential, as it can assess kidney function and pathologic changes non-invasively by evaluating perfusion, oxygenation, cellular density and fibrosis.
OBJECTIVE:
To develop a multi-modality imaging approach for the evaluation of the spectrum of pathologic changes in LN.

METHODS:

In this multi-center study, subjects who were having a standard of care renal biopsy for LN were asked to participate in the imaging evaluation. Local Institutional Review Board approval was obtained, and subjects signed an Informed Consent Form. Dynamic contrast enhanced MRI (DCE-MRI) was employed to detect changes in vascularization and perfusion, Diffusion Weighted Imaging (DWI) to assess interstitial diffusion, T2*Map/BOLD – the tissue oxygenation and T1rho to evaluate fibrosis. The imaging scores will be compared to renal biopsy, including ISN/RPS classification of LN, activity index and chronicity index.

RESULTS:
Five patients have been evaluated to date and their imaging data assessed for quality. The initial results have demonstrated the feasibility of acquiring multi-modality imaging data, including dynamic imaging sequences, in the multi-center trial setting. Figure 1 illustrates scans from a representative patient. This study will determine whether multi-modality imaging could become an effective, non-invasive tool to assess renal function and pathology in LN.
CONCLUSION:
The initial assessment of 5 LN subjects has established the feasibility of multi-modality imaging as a tool to evaluate LN in a multi-center study. By assessing functional and structural MRI outcomes and correlating them to clinical data, this study will provide essential preliminary evidence on the value of multi-modality imaging in diagnosis and evaluating the response to treatment of LN patients.