Decision Making in Surveillance of High-Grade Gliomas Using Perfusion MRI as Adjunct to conventional MRI and Artificial Intelligence.

IAG & UCL poster for the 2019 ASCO Annual Meeting


Surveillance of High-Grade Gliomas (HGGs) remains a major challenge in clinical neurooncology. Histopathological validation is not an option during the course of disease and imaging surveillance suffers from ambiguous features of both disease progression and treatment related changes. This study aimed to differentiate between Pseudoprogression (PsP) and Progressive Disease (PD) using an artificial intelligence (support vector machine – SVM) classification algorithm.
Two groups of patients with histologically proven HGGs were analysed, a group with a single time point DSC perfusion MRI (45 patients) and a group with multiple time point DSC perfusion MRI (19 patients). Both groups included conventional MRI studies prior and after each perfusion MRI. This study design aimed to replicate decision making in clinical practice including multiple previous studies for each patient. SVM training was performed with all available MRI studies for each group and classification was based on different feature datasets from a single or multiple (subtracted features) time points. Classification accuracy comparisons were performed by calculating prediction error rates for different feature datasets and different time point analyses.
Our results indicate that the addition of multiple time point perfusion MRI combined with structural (conventional with gadolinium-enhanced sequences) MRI features results in optimal classification performance (median error rate: 0.016, lowest value dispersion). Subtracted feature datasets improved classification performance, more prominently when the final and first perfusion studies were included in the analysis. On the contrary, in the single time point group analysis, structural feature-based classification performed best (median error rate: 0.012).
Validation of our results with a larger patient cohort may have significant clinical importance in optimising imaging surveillance and clinical decision making for patients with HGG.

Technical Challenges in the Clinical Application of Radiomics

Radiomics is a quantitative approach to medical image analysis targeted at deciphering the morphologic and functional features of a lesion. Radiomic methods can be applied across various malignant conditions to identify tumor phenotype characteristics in the images that correlate with their likelihood of survival, as well as their association with the underlying biology. Identifying this set of characteristic features, called tumor signature, holds tremendous value in predicting the behavior and progression of cancer, which in turn has the potential to predict its response to various therapeutic options. We discuss the technical challenges encountered in the application of radiomics, in terms of methodology, workflow integration, and user experience, that need to be addressed to harness its true potential.