Copyright © 2019 by American Society of Clinical Oncology
Journal of Clinical Oncology. 2019 May;37(15)_suppl doi: 10.1200/JCO.2019.37.15_suppl.e13559
Abstract
BACKGROUND:
Modified response assessment in neuro-oncology (mRANO) criteria are widely used in GBM but seem insufficient to capture Pseudoprogression (PsP), which occurs due to extensive inflammatory infiltration, increased vascular permeability, tumor necrosis and edema. mRANO criteria recommend volumetric response evaluation using contrast-enhanced T1 subtraction maps for identifying PsP. Our approach incorporates multi-parametric MRI biomarkers to unravel the true PsP from recurrence or distinguish Pseudo Response (PsR) – following anti-VEGF agents – from delayed (immuno)response.
METHODS:
Multiple time-points MRI (18-24h after convection-enhance delivery of the anti-IL4-R agent MDNA55, then at 30-day intervals) was utilized to determine response. Multi-parametric MRI biomarkers analyzed included (1) 3D-FLAIR-T2-based tumor volume assessment reflecting edema, necrosis and tumor infiltration; (2) 3D-gadolinium-enhanced-based tumor volume estimation reflecting active tumor infiltration, neo-angiogenesis and disrupted blood brain barrier; (3) Dynamic susceptibility contrast-based relative cerebral blood volume (rCBV) measurements for estimation of the vascular tumour properties; and (4) Diffusion weighted imaging – Apparent diffusion coefficient measurements that assess interstitial edema, tumor cellularity and ischemic injury.
RESULTS:
We demonstrate similar imaging phenotypes on conventional FLAIR-T2- and enhanced T1- MR images among different disease states (PsP vs true progression, PsR vs and immuno-response) and describe the perfusion and diffusion MRI biomarkers that improve response staging including PsP masking true progression, PsP masking clinical response, early progression with delayed response, and differentiation between true and PsR. The results are compared with the mRANO-based assessments for concurrence.
CONCLUSIONS:
Incorporating multi-parametric MRI measurements to determine the complex underlying tissue processes enables a better assessment of PsP, PsR and delayed tumour response, and can supplement mRANO-based response assessments in GBM patients undergoing novel immunotherapies.