Early Response Assessment Through Multiparametric MRI Based Endpoints In A Phase II Multicenter Study Evaluating the Efficacy of DPX-Survivac, Intermittent Low Dose Cyclophosphamide (CPA) and Pembrolizumab Combination Study in Subjects with Solid Tumors.

Copyright © 2019 by American Society of Clinical Oncology
Journal of Clinical Oncology. 2019 May;37(15)_suppl doi: 10.1200/JCO.2019.37.15_suppl.e14245

Abstract

BACKGROUND:
Accurate assessment of tumor response to immunotherapy is challenged by pseudoprogression that mimics true progression. Conventional imaging and RECIST assessment do not adequately distinguish between them given their inability to account for changes in the tumor microenvironment. DPX-Survivac is a novel T cell activating therapy that triggers immune responses against tumors expressing survivin and is being studied in this trial in combination with CPA and pembrolizumab in several solid tumors. Multiparametric MRI approaches – dynamic contrast-enhanced MRI and diffusion-weighted imaging MRI are useful for accurate assessment of structural, perfusion and vascular assessment of the lesion and may identify pseudoprogression and compare to the RECIST-based assessment.
METHODS:
The study will enroll up to 226 evaluable subjects in 5 different cohorts: ovarian cancer, HCC, NSCLC, bladder cancer and MSI-H cancer. These subjects will undergo initial imaging 28 days prior to treatment, to be assessed based on RECIST 1.1, and a pre-treatment tumor biopsy for quantitation of survivin and PD-L1 expression and MSI analyses. Treatment for 35 cycles or until disease progression. All patients will have CT images for RECIST 1.1 and iRECIST assessment. A subset of subjects will undergo mpMRI to calculate advanced imaging biomarkers.
RESULTS:
MRI, clinical and patient-reported outcomes will be analyzed.
CONCLUSIONS:
This study will provide important evidence on the utility of mpMRI + CT-based assessment of response to immunotherapy and use it as an adjunct to the CT-based RECIST criteria by providing insight on how tumor lesions are impacted by treatment.