Quantitative Imaging Analysis of FDG PET/CT Imaging for Detection of Central Neurolymphomatosis in a Case of Recurrent Diffuse B-Cell Lymphoma

Neurolymphomatosis (NL) is a rare disease characterized by malignant lymphocytes infiltrating various structures of the nervous system. It typically manifests as a neuropathy involving the peripheral nerves, nerve roots, plexuses, or cranial nerves. It often presents as a complication of lymphoma, but it can be the presenting feature of recurrent lymphoma. It is essential to identify and initiate treatment early with chemotherapy and/or radiation therapy in all cases of nodal or visceral (including neural) involvement with lymphoma. There are various diagnostic tests that can be used for its detection, such as cerebrospinal spinal fluid (CSF) cytology, electromyography (EMG), magnetic resonance imaging (MRI), and positron-emission tomography/computed tomography (PET/CT). FDG-PET/CT is the standard of care in lymphoma staging, restaging, and therapy response assessment, but has an inherent limitation in the detection of disease involvement in the central nervous system. While that is mostly true for visual assessment, there are quantitative methods to measure variation in the metabolic activity in the brain, which in turn helps detect the occurrence of neurolymphomatosis.

Technical Challenges in the Clinical Application of Radiomics

Radiomics is a quantitative approach to medical image analysis targeted at deciphering the morphologic and functional features of a lesion. Radiomic methods can be applied across various malignant conditions to identify tumor phenotype characteristics in the images that correlate with their likelihood of survival, as well as their association with the underlying biology. Identifying this set of characteristic features, called tumor signature, holds tremendous value in predicting the behavior and progression of cancer, which in turn has the potential to predict its response to various therapeutic options. We discuss the technical challenges encountered in the application of radiomics, in terms of methodology, workflow integration, and user experience, that need to be addressed to harness its true potential.

Whole-Body MR Imaging The Novel, “Intrinsically Hybrid,” Approach to Metastases, Myeloma, Lymphoma, in Bones and Beyond

Abstract

Whole-body MR imaging (WB-MR imaging) has become a modality of choice for detecting bone metastases in multiple cancers, and bone marrow involvement by multiple myeloma or lymphoma. Combination of anatomic and functional sequences imparts an inherently hybrid dimension to this nonirradiating tool and extends the screening of malignancies outside the skeleton. WB-MR imaging outperforms bone scintigraphy and CT and offers an alternative to PET in many tumors by time of lesion detection and assessment of treatment response. Much work has been done to standardize procedures, optimize sequences, validate indications, confirm preliminary research into new applications, rendering clinical application more user-friendly.

KEY POINTS
 Using anatomic and functional sequences, whole-body MR imaging (WB-MR imaging) offers a
“hybrid” approach to global cancer staging, maximizing early detection of different lesion types
for all-organ screening and assessment of therapeutic response.
 WB-MR imaging is now a commonly applied and recommended modality for bone screening for
“osteophilic” metastases in the case of solid cancers, lymphoma, and multiple myeloma and expands
screening to visceral and nodal involvement.
 Efforts have been made for the optimization of the technique, minimization of acquisition times, and
harmonization in sequence acquisition, reading, reporting, and evaluation of lesion response to
treatment.

 

Diffusion weighted and dynamic contrast enhanced MRI as an imaging biomarker for stereotactic ablative body radiotherapy (SABR) of primary renal cell carcinoma

Abstract

Purpose
To explore the utility of diffusion and perfusion changes in primary renal cell carcinoma (RCC) after stereotactic ablative body radiotherapy (SABR) as an early biomarker of treatment response, using diffusion weighted (DWI) and dynamic contrast enhanced (DCE) MRI.

Methods
Patients enrolled in a prospective pilot clinical trial received SABR for primary RCC, and had DWI and DCE MRI scheduled at baseline, 14 days and 70 days after SABR. Tumours <5cm diameter received a single fraction of 26 Gy and larger tumours received three fractions of 14 Gy. Apparent diffusion coefficient (ADC) maps were computed from DWI data and parametric and pharmacokinetic maps were fitted to the DCE data. Tumour volumes were
contoured and statistics extracted. Spearman’s rank correlation coefficients were computed between MRI parameter changes versus the percentage tumour volume change from CT at 6, 12 and 24 months and the last follow-up relative to baseline CT.

Results
Twelve patients were eligible for DWI analysis, and a subset of ten patients for DCE MRI analysis. DCE MRI from the second follow-up MRI scan showed correlations between the change in percentage voxels with washout contrast enhancement behaviour and the change in tumour volume (ρ = 0.84, p = 0.004 at 12 month CT, ρ = 0.81, p = 0.02 at 24 month CT, and ρ = 0.89, p = 0.001 at last follow-up CT). The change in mean initial rate of
enhancement and mean Ktrans at the second follow-up MRI scan were positively correlated with percent tumour volume change at the 12 month CT onwards (ρ = 0.65, p = 0.05 and ρ = 0.66, p = 0.04 at 12 month CT respectively). Changes in ADC kurtosis from histogram analysis at the first follow-up MRI scan also showed positive correlations with the percentage tumour volume change (ρ = 0.66, p = 0.02 at 12 month CT, ρ = 0.69, p = 0.02
at last follow-up CT), but these results are possibly confounded by inflammation.

Conclusion
DWI and DCE MRI parameters show potential as early response biomarkers after SABR for primary RCC. Further prospective validation using larger patient cohorts is warranted.