Gallbladder adenocarcinoma is an uncommon and serious disease. The primary disease grows rapidly with local invasion into the liver and with distant spread to lymph nodes. It is often detected late, due to which management can be challenging. Despite routine use of computed tomography (CT) and ultrasonography (US) for detection, magnetic resonance imaging (MRI) is often considered for a detailed assessment of the anatomic behavior of these tumors. We share three cases where 18-FDG PET/CT played a role in management thereof.
PET
A Critical Appraisal of the Quality of 18F-FDG PET/CT Guidelines in Oncology using the AGREE II tool: A EuroAIM Initiative
PET/MR in Neuro-oncology: is it Ready for Prime-time?
Current Landscape of Imaging and the Potential Role for Artificial Intelligence in the Management of COVID-19
18F-FDG PET/CT Imaging of Extranodal Rosai-Dorfman Disease with Hepatopancreatic Involvement – A Pictorial and Literature Review
18F-FDG PET/CT Imaging of Gallbladder Adenocarcinoma – A Pictorial Review
Diagnostic yield of FDG PET/CT, MRI, and CSF cytology in nonbiopsiable Neurolymphomatosis as a heralding feature of Diffuse B-cell Lymphoma recurrence.
Neurolymphomatosis (NL) is a rare condition associated with lymphomas in which various structures of the nervous system are infiltrated by malignant lymphocytes. Rarely, it may be the presenting feature of recurrence of lymphoma otherwise deemed to be in remission. It is crucial, as is the case with all types of nodal or visceral involvement of lymphoma, to identify the disease early and initiate treatment with chemotherapy and/or radiation therapy. Positron emission tomography-computed tomography (PET-CT) has been shown to be a sensitive modality for staging, restaging, biopsy guidance, therapy response assessment, and surveillance for recurrence of lymphoma. Magnetic resonance imaging (MRI) is another useful imaging modality, which, along with PET/CT, compliment cerebrospinal spinal fluid (CSF) cytology and electromyography (EMG) in the diagnosis of NL. Performing nerve biopsies to confirm neurolymphomatosis can be challenging and with associated morbidity. The case presented herein illustrates the practical usefulness of these tests in detecting NL as a heralding feature of lymphoma recurrence, especially in the absence of histopathologic correlation.
Quantitative Imaging Analysis of FDG PET/CT Imaging for Detection of Central Neurolymphomatosis in a Case of Recurrent Diffuse B-Cell Lymphoma
Neurolymphomatosis (NL) is a rare disease characterized by malignant lymphocytes infiltrating various structures of the nervous system. It typically manifests as a neuropathy involving the peripheral nerves, nerve roots, plexuses, or cranial nerves. It often presents as a complication of lymphoma, but it can be the presenting feature of recurrent lymphoma. It is essential to identify and initiate treatment early with chemotherapy and/or radiation therapy in all cases of nodal or visceral (including neural) involvement with lymphoma. There are various diagnostic tests that can be used for its detection, such as cerebrospinal spinal fluid (CSF) cytology, electromyography (EMG), magnetic resonance imaging (MRI), and positron-emission tomography/computed tomography (PET/CT). FDG-PET/CT is the standard of care in lymphoma staging, restaging, and therapy response assessment, but has an inherent limitation in the detection of disease involvement in the central nervous system. While that is mostly true for visual assessment, there are quantitative methods to measure variation in the metabolic activity in the brain, which in turn helps detect the occurrence of neurolymphomatosis.
OBESITY and SARCOPENIA
BODY COMPOSITION
When conducting an obesity trial to measure body composition, it’s important to choose imaging options that provide accurate and reliable results. Here are some of the best imaging modalities commonly used for this purpose:
- Dual-Energy X-ray Absorptiometry (DXA): DXA scans are highly accurate and are considered the gold standard for measuring body composition. They can provide information about bone density, fat mass, and lean mass.
- Computed Tomography (CT) Scan: CT scans can offer detailed information about fat distribution within the body, allowing for precise measurements of visceral and subcutaneous fat.
- Magnetic Resonance Imaging (MRI): MRI can provide excellent visualization of fat and lean tissue, offering insights into body composition. It’s non-invasive and does not involve radiation.
- Bioelectrical Impedance Analysis (BIA): While not an imaging modality in the traditional sense, BIA uses electrical impedance to estimate body composition. It’s relatively simple and cost-effective.
- Ultrasound: Ultrasound imaging can be used to assess the subcutaneous fat thickness and muscle thickness at specific locations, making it useful for localized body composition measurements.
- Air Displacement Plethysmography (ADP): ADP, commonly measured using the BodPod, calculates body composition based on the principles of air displacement. It’s non-invasive and provides accurate results.
- Positron Emission Tomography (PET) Scan: PET scans can be used to assess metabolic activity in fat tissue, providing insights into obesity-related metabolic changes.
The choice of imaging modality should depend on factors such as the specific research goals, budget, and accessibility of equipment. It’s often advisable to consult with a medical imaging expert or radiologist to determine the most suitable option for your obesity trial. Additionally, consider ethical and safety aspects when conducting imaging studies involving human participants
About IAG, Image Analysis Group
IAG is a unique partner to life sciences companies developing new treatment and driving the hope of the up-coming precision medicine. IAG leverages expertise in medical imaging and the power of DYNAMIKA™, our proprietary cloud-based platform, to de-risk clinical development and deliver lifesaving therapies into the hands of patients much sooner. IAG provides early drug efficacy assessments, smart patient recruitment and predictive analysis of advanced treatment manifestations, thus lowering investment risk and accelerating study outcomes.
Acting as imaging Contract Research Organization, IAG’s experts also recognize the significance of a comprehensive approach to asset development. They actively engage in co-development projects with both private and public sectors, demonstrating a commitment to cultivating collaboration and advancing healthcare solutions.
Contact our expert team: imaging.experts@ia-grp.com
Experience: Scoring Systems
- Eligibility and Safety Assessments
- Body Mass Index (BMI) Score
- Visceral Adiposity Index (VAI)
- Fat Mass Index (FMI)
- Fat-Free Mass Index (FFMI)
- Total Body Fat Percentage
- Sarcopenia Index
- Epicardial Fat Volume Score
- Liver Fat Score
- Muscle Quality Score
- Phase Angle (PhA)
Experience: Imaging
- MRI
- DEXA
- CT
- PET, PET-CT
- Ultrasound
- ADP
- BIA
Publications
Since 2007, over 2000 articles were published to cover scientific discoveries, technology break-throughs and special cases. We list here some critically important papers and abstracts.
Testimonials
Combining our technologies and business advisory services with promising life science companies has yielded spectacular results over the past five years. As a trusted partner to many biotech and pharma companies, IAG’s team is proud to share your words and quotes.