AltruBio and IAG, Image Analysis Group Partner to Deploy AI in Gastrointerology

AltruBio and IAG, Image Analysis Group Partner to Deploy AI in Gastrointerology

AltruBio and IAG teams will be deploying AI to assess patient response in phase 2 IBD study

SAN FRANCISCO, May 08, 2023 – AltruBio Inc. (“AltruBio” or “the Company”), a clinical-stage biotech company specializing in the development of novel therapeutics for the treatment of immunological diseases with high unmet medical needs, today announced a joint poster presentation with their partner Image Analysis Group (IAG) at the Digestive Disease Week® conference, held at McCormick Place in Chicago, IL, from May 6-9, 2023.

David T. Rubin, M.D., Professor of Medicine and Pathology at the University of Chicago and AltruBio Scientific Advisory Board member, will present proof of concept data utilizing a novel AI-powered method developed by IAG for the analysis of patient tissue from AltruBio’s Phase 2b open label study of immune checkpoint enhancer (ICE) ALTB-168, in patients with moderately to severely active anti-TNFα and/or anti-integrin refractory ulcerative colitis (UC).

“Using AI tools for histology simplifies the interpretation of histological samples and offers promise in establishing a new gold standard of histological assessment in clinical trials, as well as providing earlier signals for interpretation beneficial to both patients and scientists,” said Dr. Rubin.

Jesse Hall, M.D., Chief Medical Officer of AltruBio, added,

“IAG’s AI-powered technology accurately supports histological assessment of treatment response to our ICE in development. We plan to continue clinical validation of targeting PSGL-1 to treat autoimmune and inflammatory diseases and share further progress this year.”

Key data highlights include an 87% correlation between AI Tool-determined Nancy Indices and those conducted by an expert pathologist. The AI Tool also demonstrated a 93% decrease in automatically detected neutrophils for subjects who achieved clinical remission.

Poster Presentation Details:

Session Title: AGA IBD: Disease Activity Assessment Session Date & Time: May 8, 2023 from 12:30 PM to 1:30 PM CDT (UTC –5) Presentation Title: A Novel AI Tool is Accurate at Interpreting Histology and Detects Response to ALTB-168 Therapy in Patients with Moderate to Severe Ulcerative Colitis: Proof of Concept

About AltruBio Inc.

AltruBio is a privately held biotechnology company headquartered in San Francisco that focuses on developing novel therapeutics for the treatment of immunological diseases with high unmet medical needs. Its first-generation molecule, ALTB-168, has achieved proof of mechanism in four autoimmune and inflammatory diseases. The next-generation ICE, ALTB-268, is currently being evaluated in a Phase 1 clinical trial.

About Digestive Disease Week Digestive Disease Week®

DDW is the largest international gathering of physicians, researchers, and academics in the fields of gastroenterology, hepatology, endoscopy, and gastrointestinal surgery. The conference showcases more than 3,100 abstracts and hundreds of lectures on the latest advances in GI research, medicine, and technology. More information can be found at www.ddw.org.

About IAG, Image Analysis Group:

IAG, Image Analysis Group is a unique clinical development partner to life sciences companies. We broadly leverage our proprietary image analysis methodologies, power of our cloud platform DYNAMIKA, years of experience in AI and Machine Learning as well as bespoke co-development business models to ensure higher probability for promising therapeutics to reach the patients. Our independent Bio-Partnering division fuses risk-sharing business models and agile culture to accelerate novel drug development. wp1.ia-grp.com

Reach out: imaging.experts@ia-grp.com

Follow the Company: Linkedin

READ NEXT CASE STUDY >

Mobility Bio and IAG, Image Analysis Group Partner to Develop Novel Osteoarthritis Drug Candidate.

Mobility Bio and IAG, Image Analysis Group Partner to Develop Novel Osteoarthritis Drug Candidate.

Mobility Bio and Image Analysis Group Partner to Objectively Assess Osteoarthritis Patient Response in a Proof of Concept Study using AI-Driven Imaging Biomarkers

Mobility Bio and Image Analysis Group Partner to Objectively Assess Osteoarthritis Patient Response in a Proof of Concept Study using AI-Driven Imaging Biomarkers

Mobility Bio, an emerging bio-pharma focused on the development of novel therapies for joint diseases and IAG, Image Analysis Group, a strategic bio-pharma imaging expert announce a partnership in the development of Mobility’s lead asset.

The IAG team has significant experience in using medical imaging to support drug development. IAG will use their proprietary AI-driven methodology for Dynamic Enhanced MRI Quantification (DEMRIQ) to acquire and analyse MRI images in Mobility Bio’s first in human clinical study of their novel therapeutic.

We are pleased to partner with Mobility and bring world-class imaging experts, who bring their expertise to maximise success in the clinic and help finding a solution for OA patients.’ said Dr. Olga Kubassova, IAG’s CEO.

We are delighted to work with IAG and leverage their advanced imaging capabilities as we study the potential of our lead product to benefit patients with osteoarthritis’ said Dr Tharak Rao, Mobility Bio’s Chief Medical Officer.

About Image Analysis Group (IAG):

IAG, Image Analysis Group is a unique clinical development partner to life sciences companies. We broadly leverage our proprietary image analysis methodologies, power of our cloud platform DYNAMIKA, years of experience in AI and Machine Learning as well as bespoke co-development business models to ensure higher probability for promising therapeutics to reach the patients. Our independent Bio-Partnering division fuses risk-sharing business models and agile culture to accelerate novel drug development. wp1.ia-grp.com

About Mobility Bio: 

Founded by Stanford physicians and scientists, Mobility is advancing treatments for osteoarthritis and other diseases that cause joint pain and disability. Osteoarthritis affects over 20 million people in the United States alone and lacks effective treatments to slow the progression of disease. Mobility’s new OA medicines are designed to reduce pain and discomfort, alleviate the underlying processes that lead to joint damage, and improve patients’ quality of life.

For more information, please reach out to: imaging.experts@ia-grp.com

READ NEXT CASE STUDY >

IAG Collaborates with Peter McCallum Cancer Center on bringing AI into Oncology Drug Development.

IAG Collaborates with Peter McCallum Cancer Center on bringing AI into Oncology Drug Development.

Why Targeted Drugs and Therapies Demand Novel Biomarkers for Assessing Tumour Burden

Cancer treatment is determined by the type of cancer and its stage. If caught at an early stage, treatment options include surgery or radiotherapy. Chemotherapy, drugs that potentially kill cancer cells, is necessary at a later stage when the cancer is more advanced or has spread. Chemotherapy is delivered systemically and acts with limited specificity in the body: cancer cells and healthy cells are affected and therefore, chemotherapy can result in severe side effects.

Today we see the rise of targeted cancer therapies and high-precision imaging

Over the last few decades several novel treatment modalities have become an important part in the fight against cancer.

Targeted cancer drugs work by ‘targeting’ differences of a cancer cell on a molecular level. Popular targets include those important for cancer growth and progression. Targeted drugs for example stop cancer cells from dividing, encourage the immune system to find and kill cancer cells or stop cancers from growing blood vessels. They are delivered systemically and can still have side effects, but, are generally less severe than chemotherapy.

Stereotactic ablative body radiotherapy (SABR) is a novel high-precision treatment modality. Radiotherapy beams originate from different positions around the body and are calibrated by medical imaging. As a result, the tumour receives a high dose and the surrounding tissues a lower dose. Careful treatment planning and the inherent high-precision of the technology allows that the radiotherapy field covers the tumour while avoiding healthy tissue as far as possible. This reduces the risk of side effects.

Effects to the Tumour Morphology

While novel cancer treatments are different in their delivery and mode of action, they share a common motivation and morphological tumour response.

Innovative therapies are specific by focusing on local control of the tumour and thus, lower the risk of side effects. Besides being effective in cancer cell death, they do not necessarily result in tumour morphological change: a residual non-viable tumour architecture can remain for a sustained period post-treatment.

Broadly speaking, novel therapies result in a complex tumour remnant that complicates the assessment of changes in tumour burden.

Cancer Therapy Validation

New drugs and therapies require a thorough validation showing treatment success. The Response Evaluation Criteria in Solid Tumours (RECIST) provides a validated and consistent methodology to evaluate the activity and efficacy of new cancer therapies in solid tumours: RECIST determines the tumour diameter on cross-sectional computed tomography (CT) or magnetic resonance imaging (MRI) scans to assess changes in tumour burden.

In January 2017, the RECIST working group has published on the continued relevance of RECIST guidelines and on the challenge to maintain RECIST as a standard for the assessment of tumour burden in clinical trials. The authors have acknowledged that “…maintaining the validity and relevance of RECIST as a standard evaluation approach is challenging, in particular to maintain a balance between its specificity and generalizability…” Furthermore, the authors noted that the RECIST linked data collection in clinical trials limits the utility of existing databases for the validation of new evaluation approaches to tumour response.

Modifications to Adjust to Novel Therapies

It is critical to note that RECIST version 1.1 remains the only general tool that provides harmonization of tumour response assessment.

However, the working group and a large body of research brings to light the acute need for new imaging modalities, assessment methodologies and updated criteria to support the development of the new classes of treatments. As a response to this need, the immune Response Evaluation Criteria in Solid Tumours for cancer immunotherapy trials (iRECIST) has been developed and validated.

Advanced Imaging and Analysis Methodologies

Recent research has shown that advanced imaging and Artificial Intelligence (AI)-powered analysis provide detailed insight into therapy related tumour microenvironmental changes and are able to predict RECIST outcomes.

MRI poses a promising alternative to evaluate tumour response and is currently rated as equivalent to CT by the American College of Radiology for solid tumours. Multi-parametric MRI (mpMRI) is a sequence of anatomical and functional MRI scans. Several solid tumour trials have successfully implemented mpMRI as an effective explorative endpoint; mpMRI’s ability to predict pathological response is considered as an important advantage over CT.

IAG, Image Analysis Group collaborates with Peter McCallum Cancer Center

IAG’s recent collaborative clinical trial in stereotactic ablative body radiotherapy (SABR) in renal cell cancer (RCC) has implemented a mpMRI protocol.

IAG’s expert team designed and deployed a dynamic contrast enhanced (DCE) MRI and diffusion weighted MRI (DWI) as part of a mpMRI imaging protocol to provide earlier evidence of response (Reynolds et al., 2018).

Resulting quantitative imaging biomarkers have shown to be predictive to RECIST-based assessments.

Together, with our scientific collaborators, IAG’s team brought forward novel imaging biomarkers that have shown significant correlations between the tumour volume change and changes in advanced perfusion imaging biomarkers.

The figure to this article shows colour coded parametric maps before and after therapy. More in the full article.

Full Article: Diffusion weighted and dynamic contrast enhanced MRI as an imaging biomarker for stereotactic ablative body radiotherapy (SABR) of primary renal cell carcinoma

About IAG, Image Analysis Group 

IAG, Image Analysis Group is a unique partner to life sciences companies, leading AI-powered drug development and precision medicine. IAG leverages expertise in medical imaging and the power of Dynamika™ – our proprietary cloud-based platform, to de-risk clinical development and deliver lifesaving therapies into the hands of patients much sooner.  IAG provides early drug efficacy assessments, smart patient recruitment and predictive analysis of advanced treatment manifestations, thus lowering investment risk and accelerating study outcomes. IAG bio-partnering takes a broader view on asset development bringing R&D solutions, operational breadth, radiological expertise via risk-sharing financing and partnering models.

Learn more:  wp1.ia-grp.com

Reach out: imaging.experts@ia-grp.com

Follow the Company: Linkedin

READ NEXT CASE STUDY >