Just Published ‘MRI of Joint Infection and Inflammation, with Emphasis of DCE-MRI’ by IAG’ Scientific Leadership & Collaborators

Slider with alias news slider not found.

Just Published ‘MRI of Joint Infection and Inflammation, with Emphasis of DCE-MRI’ by IAG’ Scientific Leadership & Collaborators

Inflammation is the hallmark and main driver of both inflammatory and infectious joint diseases, that will lead to rapid destruction of the joint structures if appropriate diagnosis and treatments are delayed. To improve the validity of quantitative imaging biomarkers when diagnosing, monitoring or treating infectious and most inflammatory joint diseases, it is vital to utilize Dynamic Contrast Enhanced MRI (DCE-MRI) over conventional contrast-enhanced MRI. This allows for accurate differentiation of soft and bony tissue from fluid collections and infectious debris and robust extraction of quantitative information regarding blood flow and capillary permeability, especially when dedicated analysis methods and software are used to analyze contrast kinetics.

A extended review by IAG’s scientific team and international group of collaborators just published in PET Clinics: https://lnkd.in/dh7zMz It describes principles of DCE-MRI for the assessment of infectious and inflammatory joint diseases.

Request more information: info@ia-grp.com

Key Points

  • DCE-MRI can provide robust and sensitive quantitative information on perfusion in the joint tissues for diagnosis and monitoring of infectious and most inflammatory joint diseases


  • There is increasing evidence of clinical and research utility of DCE-MRI in inflammatory and degenerative joint diseases, and to a lesser degree in septic arthritis and spondyloarthropaties


  • High sensitivity and reproducibility of quantitative perfusion markers can be obtained from DCE-MRI in healthy individuals and patients when appropriate post-processing imaging software is used


  • Quantitative DCE-MRI perfusion markers correlate highly with synovial vascularity and inflammatory cell infiltrates and allows differentiation of patients with distinct inflammatory joint diseases


  • DCE-MRI-based outcome measures show high sensitivity to treatment response following steroid injection and biologic treatments and correlate closely with clinical scores of pain and function in patients with inflammatory and degenerative joint diseases

Therapeutic Areas Discussed:


Mikael Boesen, Olga Kubassova, Iwona Sudoł-Szopińska, Mario Mass, Philip Hansen, Janus Damm Nybing, Edwin H. Oei, Robert Hemke, Ali Guermazi



  1. Burge AJ, Nwawka OK, Berkowitz JL, Potter HG. Imaging of Inflammatory Arthritis in Adults: Status and Perspectives on the Use of Radiographs, Ultrasound, and MRI. Rheumatic Disease Clinics of North America, Imaging in Rheumatic Diseases. 2016;42(4):561-585.
  2. Math KR, Berkowitz JL, Paget SA, Endo Y. Imaging of Musculoskeletal Infection. Rheumatic Disease Clinics. 2016;42(4):769-784.
  3. Rosenberg ZS, Shankman S, Steiner GC, Kastenbaum DK, Norman A, Lazansky MG. Rapid destructive osteoarthritis: clinical, radiographic, and pathologic features. Radiology. 1992;182(1):213-216.
  4. Turan A, Celtikci P, Tufan A, Ozturk MA. Basic radiological assessment of synovial diseases: a pictorial essay. Eur J Rheumatol. 2017;4(2):166-174.
  5. Boesen M, Ostergaard M, Cimmino MA, Kubassova O, Jensen KE, Bliddal H. MRI quantification of rheumatoid arthritis: current knowledge and future perspectives. Eur J Radiol. 2009;71(2):189-196.
  6. Weber U, Jurik AG, Lambert RG, et al. Imaging in Spondyloarthritis: Controversies in Recognition of Early Disease Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Curr Rheumatol Rep. 2016;18(1534-6307 (Electronic)):58.
  7. Hayeri MR, Ziai P, Shehata ML, Teytelboym OM, Huang BK. Soft-Tissue Infections and Their Imaging Mimics: From Cellulitis to Necrotizing Fasciitis. Radiographics. 2016;36(6):1888-1910.
  8. Browne LP, Guillerman RP, Orth RC, Patel J, Mason EO, Kaplan SL. Community-Acquired Staphylococcal Musculoskeletal Infection in Infants and Young Children: Necessity of Contrast-Enhanced MRI for the Diagnosis of Growth Cartilage Involvement. American Journal of Roentgenology. 2012;198(1):194-199.
  9. O’Connor JPB, Tofts PS, Miles KA, Parkes LM, Thompson G, Jackson A. Dynamic contrast-enhanced imaging techniques: CT and MRI. Br J Radiol. 2011;84(Spec Iss 2):S112-S120.
  10. Cimmino MA, Innocenti S, Livrone F, Magnaguagno F, Silvestri E, Garlaschi G. Dynamic gadolinium-enhanced magnetic resonance imaging of the wrist in patients with rheumatoid arthritis can discriminate active from inactive disease. Arthritis Rheum. 2003;48(5):1207-1213.
  11. Lee RKL, Griffith JF, Wang DF, et al. Dynamic contrast-enhanced imaging of the wrist in rheumatoid arthritis: dedicated low-field (0.25-T) versus high-field (3.0-T) MRI. Skeletal radiology. 2015;44(8):1095-1101.
  12. Boesen M, Kubassova O, Cimmino MA, et al. Dynamic Contrast Enhanced MRI Can Monitor the Very Early Inflammatory Treatment Response upon Intra-Articular Steroid Injection in the Knee Joint: A Case Report with Review of the Literature. Arthritis. 2011;2011:1-8.
  13. Kubassova O, Boesen M, Boyle RD, et al. Fast and robust analysis of dynamic contrast enhanced MRI datasets. Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. 2007;10(Pt 2):261-269.
  14. Kubassova OA, Boyle RD, Radjenovic A. Quantitative analysis of dynamic contrast-enhanced MRI datasets of the metacarpophalangeal joints. Acad. Radiol. 2007;14(10):1189-1200.
  15. van de Sande MG, van der Leij C, Lavini C, Wijbrandts CA, Maas M, Tak PP. Characteristics of synovial inflammation in early arthritis analysed by pixel-by-pixel time-intensity curve shape analysis. Rheumatology (Oxford). 2012;51(7):1240-1245.
  16. Lavini C, de Jonge MC, van de Sande MG, Tak PP, Nederveen AJ, Maas M. Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging. 2007;25(5):604-612.
  17. Cuenod CA, Balvay D. Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn. Interv. Imaging. 2013;94(12):1187-1204.
  18. Sourbron S. Technical aspects of MR perfusion. Eur J Radiol. 2010;76(3):304-313.
  19. Khalifa F, Soliman A, El-Baz A, et al. Models and methods for analyzing DCE-MRI: a review. Med Phys. 2014;41(12):124301.
  20. Kubassova O, Boesen M, Peloschek P, et al. Quantifying disease activity and damage by imaging in rheumatoid arthritis and osteoarthritis. Ann. N. Y. Acad. Sci. 2009;1154:207-238.
  21. Kubassova O, Boesen M, Cimmino MA, Bliddal H. A computer-aided detection system for rheumatoid arthritis MRI data interpretation and quantification of synovial activity. Eur. J. Radiol. 2009.
  22. Ostergaard M, Peterfy C, Conaghan P, et al. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J. Rheumatol. 2003;30(6):1385-1386.
  23. Ostergaard M, McQueen F, Wiell C, et al. The OMERACT psoriatic arthritis magnetic resonance imaging scoring system (PsAMRIS): definitions of key pathologies, suggested MRI sequences, and preliminary scoring system for PsA Hands. J. Rheumatol. 2009;36(8):1816-1824.
  24. Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis. Cartilage. 2011;19(8):990-1002.
  25. Tofts PS, Kermode AG. Blood brain barrier permeability in multiple sclerosis using labelled DTPA with PET, CT and MRI. J Neurol Neurosurg Psychiatry. 1989;52(8):1019-1020.
  26. O’Connor JP, Jackson AF, Parker GJ FAU – Roberts C, Roberts CF, Jayson GC. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. (1759-4782 (Electronic)).
  27. DCE-MRI Technical Committee. DCE-MRI Quantification Profile, Quantitative Imaging Biomarkers Alliance. Version 1.0. RSNA.org/QIBA. 2012;Version 1:1-46.
  28. Boesen M, Kubassova O, Parodi M, et al. Comparison of the manual and computer-aided techniques for evaluation of wrist synovitis using dynamic contrast-enhanced MRI on a dedicated scanner. Eur. J. Radiol. 2011;77(2):202-206.
  29. van der LC, van de Sande MG, Lavini C, Tak PP, Maas M. Rheumatoid synovial inflammation: pixel-by-pixel dynamic contrast-enhanced MR imaging time-intensity curve shape analysis–a feasibility study. Radiology. 2009;253(1):234-240.
  30. van der Leij C, van de Sande MG, Lavini C, Tak PP, Maas M. Rheumatoid synovial inflammation: pixel-by-pixel dynamic contrast-enhanced MR imaging time-intensity curve shape analysis–a feasibility study. Radiology. 2009;253(1):234-240.
  31. van de Sande MG, van der LC, Lavini C, Wijbrandts CA, Maas M, Tak PP. Characteristics of synovial inflammation in early arthritis analysed by pixel-by-pixel time-intensity curve shape analysis. Rheumatology. (Oxford). 2012;51(7):1240-1245.
  32. Peloschek P, Boesen M, Donner R, et al. Assessement of rheumatic diseases with computational radiology: Current status and future potential. Eur. J. Radiol. 2009.
  33. Kubassova O, Boyle RD, Boesen M. Impact of Registration on Enhancement Curve Estimation in DCE-MRI Data.
  34. van der Leij C, Lavini C, van de Sande MG, de Hair MJ, Wijffels C, Maas M. Reproducibility of DCE-MRI time-intensity curve-shape analysis in patients with knee arthritis: A comparison with qualitative and pharmacokinetic analyses. J Magn Reson Imaging. 2015;42(6):1497-1506.
  35. Decker JL. American Rheumatism Association nomenclature and classification of arthritis and rheumatism (1983). Arthritis Rheum. 1983;26(8):1029-1032.
  36. Savolainen E, Kaipiainen-Seppanen O, Kroger L, Luosujarvi R. Total incidence and distribution of inflammatory joint diseases in a defined population: results from the Kuopio 2000 arthritis survey. J Rheumatol. 2003;30(11):2460-2468.
  37. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625-635.
  38. Sofat N, Ejindu V, Kiely P. What makes osteoarthritis painful? The evidence for local and central pain processing. Rheumatology. (Oxford). 2011;50(12):2157-2165.
  39. Gandhi R, Takahashi M, Virtanen C, Syed K, Davey JR, Mahomed NN. Microarray analysis of the infrapatellar fat pad in knee osteoarthritis: relationship with joint inflammation. J. Rheumatol. 2011;38(9):1966-1972.
  40. Lindblad S, Hedfors E. Arthroscopic and immunohistologic characterization of knee joint synovitis in osteoarthritis. Arthritis Rheum. 1987;30(10):1081-1088.
  41. Ushiyama T, Chano T, Inoue K, Matsusue Y. Cytokine production in the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann Rheum Dis. 2003;62(2):108-112.
  42. Clockaerts S, Bastiaansen-Jenniskens YM FAU – Runhaar, Runhaar JF, et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. (1522-9653 (Electronic)).
  43. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. (1759-720X (Print)).
  44. Grainger AJ, McGonagle D. Imaging in rheumatology. Imaging. 2007;19(3):310-323.
  45. Sudol-Szopinska I, Kontny E, Maslinski W, et al. The pathogenesis of rheumatoid arthritis in radiological studies. Part I: Formation of inflammatory infiltrates within the synovial membrane. J Ultrason. 2012;12(49):202-213.
  46. Sieper J, Rudwaleit MF, Baraliakos XF, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. (1468-2060 (Electronic)).
  47. Sudol-Szopinska I, Matuszewska G, Kwiatkowska B, Pracon G. Diagnostic imaging of psoriatic arthritis. Part I: etiopathogenesis, classifications and radiographic features. J Ultrason. 2016;16(64):65-77.
  48. McQueen FM, Doyle A, Dalbeth N. Imaging in gout – What can we learn from MRI, CT, DECT and US? Arthritis Res Ther. 2011;13(6):246-246.
  49. Torp-Pedersen S, Christensen RF, Szkudlarek MF, et al. Power and color Doppler ultrasound settings for inflammatory flow: impact on scoring of disease activity in patients with rheumatoid arthritis. (2326-5205 (Electronic)).
  50. Boutry N, Morel M, Flipo RM, Demondion X, Cotten A. Early rheumatoid arthritis: a review of MRI and sonographic findings. AJR Am J Roentgenol. 2007;189(6):1502-1509.
  51. Bliddal H, Boesen M, Christensen R, Kubassova O, Torp-Pedersen S. Imaging as a follow-up tool in clinical trials and clinical practice. Best. Pract. Res. Clin. Rheumatol. 2008;22(6):1109-1126.
  52. Ellegaard K, Torp-Pedersen S, Terslev L, nneskiold-Samsoe B, Henriksen M, Bliddal H. Ultrasound colour Doppler measurements in a single joint as measure of disease activity in patients with rheumatoid arthritis–assessment of concurrent validity. Rheumatology. (Oxford). 2009;48(3):254-257.
  53. Garcia-Figueiras R, Padhani AR, Baleato-Gonzalez S. Therapy Monitoring with Functional and Molecular MR Imaging. Magnetic Resonance Imaging Clinics of North America

Functional and Molecular Imaging in Oncology. 2016;24(1):261-288.

  1. Sujlana P, Skrok J, Fayad LM. Review of dynamic contrast-enhanced MRI: Technical aspects and applications in the musculoskeletal system. LID – 10.1002/jmri.25810 [doi]. (1522-2586 (Electronic)).
  2. Borrero CG, Mountz JM, Mountz JD. Emerging MRI methods in rheumatoid arthritis. 2010;7:85.
  3. Zierhut ML, Gardner JC, Spilker ME, Sharp JT, Vicini P. Kinetic modeling of contrast-enhanced MRI: an automated technique for assessing inflammation in the rheumatoid arthritis wrist. Ann. Biomed. Eng. 2007;35(5):781-795.
  4. Wojciechowski W, Tabor Z, Urbanik A. Assessing synovitis based on dynamic gadolinium-enhanced MRI and EULAR-OMERACT scores of the wrist in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2013;31(6):850-856.
  5. Boesen M, Kubassova O, Bouert R, et al. Correlation between computer-aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-quantitative synovitis and bone marrow oedema scores of the wrist in patients with rheumatoid arthritis–a cohort study. Rheumatology. (Oxford). 2012;51(1):134-143.
  6. Gaffney K, Cookson J, Blake D, Coumbe A, Blades S. Quantification of rheumatoid synovitis by magnetic resonance imaging. Arthritis Rheum. 1995;38(11):1610-1617.
  7. Tamai K, Yamato M, Yamaguchi T, Ohno W. Dynamic magnetic resonance imaging for the evaluation of synovitis in patients with rheumatoid arthritis. Arthritis Rheum. 1994;37(8):1151-1157.
  8. Ostergaard M, Stoltenberg M, Lovgreen-Nielsen P, Volck B, Sonne-Holm S, Lorenzen I. Quantification of synovistis by MRI: correlation between dynamic and static gadolinium-enhanced magnetic resonance imaging and microscopic and macroscopic signs of synovial inflammation. Magn Reson. Imaging. 1998;16(7):743-754.
  9. Axelsen MB, Stoltenberg M, Poggenborg RP, et al. Dynamic gadolinium-enhanced magnetic resonance imaging allows accurate assessment of the synovial inflammatory activity in rheumatoid arthritis knee joints: a comparison with synovial histology. Scand. J. Rheumatol. 2012;41(2):89-94.
  10. Vordenbäume S, Schleich C, Lögters M, et al. Dynamic contrast-enhanced magnetic resonance imaging of metacarpophalangeal joints reflects histological signs of synovitis in rheumatoid arthritis. Arthritis Research & Therapy. 2014;16(5):452.
  11. Axelsen MB, Ejbjerg BJ, Hetland ML, et al. Differentiation between early rheumatoid arthritis patients and healthy persons by conventional and dynamic contrast-enhanced magnetic resonance imaging. Scand. J. Rheumatol. 2014;43(2):109-118.
  12. Rastogi A, Kubassova O, Krasnosselskaia LV, et al. Evaluating automated dynamic contrast enhanced wrist 3T MRI in healthy volunteers: One-year longitudinal observational study. Eur. J. Radiol. 2013.
  13. Maijer KI, van der Leij C, de Hair MJ, et al. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Pharmacokinetic Modeling: Initial Experience in Patients With Early Arthritis. Arthritis Rheumatol. 2016;68(3):587-596.
  14. Cimmino MA, Barbieri F, Boesen M, et al. Dynamic contrast-enhanced magnetic resonance imaging of articular and extraarticular synovial structures of the hands in patients with psoriatic arthritis. J. Rheumatol. Suppl. 2012;89:44-48.
  15. Boesen M, Kubassova O, Bouert R, et al. Correlation between computer-aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-quantitative synovitis and bone marrow oedema scores of the wrist in patients with rheumatoid arthritis–a cohort study. Rheumatology. (Oxford). 2011.
  16. Axelsen MB, Poggenborg RP, Stoltenberg M, et al. Reliability and responsiveness of dynamic contrast-enhanced magnetic resonance imaging in rheumatoid arthritis. Scand. J Rheumatol. 2013;42(2):115-122.
  17. Reece RJ, Kraan MC FAU – Radjenovic A, Radjenovic AF, et al. Comparative assessment of leflunomide and methotrexate for the treatment of rheumatoid arthritis, by dynamic enhanced magnetic resonance imaging. (0004-3591 (Print)).
  18. Hodgson RJ, O’Connor P, Moots R. MRI of rheumatoid arthritis image quantitation for the assessment of disease activity, progression and response to therapy. Rheumatology. (Oxford). 2008;47(1):13-21.
  19. Hodgson RJ, Connolly S, Barnes T, Eyes B, Campbell RS, Moots R. Pharmacokinetic modeling of dynamic contrast-enhanced MRI of the hand and wrist in rheumatoid arthritis and the response to anti-tumor necrosis factor-alpha therapy. Magn Reson. Med. 2007;58(3):482-489.
  20. Hodgson RJ, Barnes TF, Connolly S FAU – Eyes B, Eyes BF, Campbell RS FAU – Moots R, Moots R. Changes underlying the dynamic contrast-enhanced MRI response to treatment in rheumatoid arthritis. (0364-2348 (Print)).
  21. Axelsen MB, Eshed I, Horslev-Petersen K, et al. A treat-to-target strategy with methotrexate and intra-articular triamcinolone with or without adalimumab effectively reduces MRI synovitis, osteitis and tenosynovitis and halts structural damage progression in early rheumatoid arthritis: results from the OPERA randomised controlled trial. Ann. Rheum. Dis. 2014.
  22. Meier R, Thuermel KF, Noel PB FAU – Moog P, et al. Synovitis in patients with early inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced optical imaging and MR imaging. (1527-1315 (Electronic)).
  23. Conaghan PG, Ostergaard M, Bowes MA, et al. Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitative and quantitative techniques. Ann Rheum Dis. 2016;75(6):1024-1033.
  24. Cimmino MA, Parodi M, Zampogna G, et al. Dynamic contrast-enhanced, extremity-dedicated MRI identifies synovitis changes in the follow-up of rheumatoid arthritis patients treated with rituximab. Clin Exp Rheumatol. 2014;32(5):647-652.
  25. Waterton JC, Ho M, Nordenmark LH, et al. Repeatability and response to therapy of dynamic contrast-enhanced magnetic resonance imaging biomarkers in rheumatoid arthritis in a large multicentre trial setting. (1432-1084 (Electronic)).
  26. MacIsaac KD, Baumgartner R, Kang J, et al. Pre-Treatment Whole Blood Gene Expression Is Associated with 14-Week Response Assessed by Dynamic Contrast Enhanced Magnetic Resonance Imaging in Infliximab-Treated Rheumatoid Arthritis Patients. PLoS One. 2014;9(12):e113937.
  27. McQueen FM, Benton N, Perry D, et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum. 2003;48(7):1814-1827.
  28. Haavardsholm EA, Boyesen P, Ostergaard M, Schildvold A, Kvien TK. Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression. Ann. Rheum. Dis. 2008;67(6):794-800.
  29. Hetland ML, Ejbjerg BJ, Horslev-Petersen K, et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2 year randomized controlled trial (CIMESTRA). Ann. Rheum. Dis. 2008.
  30. McQueen FM. Bone marrow edema and osteitis in rheumatoid arthritis: the imaging perspective. Arthritis Res. Ther. 2012;14(5):224.
  31. Tamai M, Kawakami A, Uetani M, et al. A prediction rule for disease outcome in patients with undifferentiated arthritis using magnetic resonance imaging of the wrists and finger joints and serologic autoantibodies. Arthritis Care & Research. 2009;61(6):772-778.
  32. McQueen FM, Gao A, Ostergaard M, et al. High-grade MRI bone oedema is common within the surgical field in rheumatoid arthritis patients undergoing joint replacement and is associated with osteitis in subchondral bone. Ann. Rheum. Dis. 2007;66(12):1581-1587.
  33. Jimenez-Boj E, Nobauer-Huhmann I, Hanslik-Schnabel B, et al. Bone erosions and bone marrow edema as defined by magnetic resonance imaging reflect true bone marrow inflammation in rheumatoid arthritis. Arthritis Rheum. 2007;56(4):1118-1124.
  34. Teruel JR, Burghardt AJ, Rivoire J, et al. Bone structure and perfusion quantification of bone marrow edema pattern in the wrist of patients with rheumatoid arthritis: a multimodality study. J Rheumatol. 2014;41(9):1766-1773.
  35. Hodgson R, Grainger A, O’Connor P, Barnes T, Connolly S, Moots R. Dynamic contrast enhanced MRI of bone marrow oedema in rheumatoid arthritis. Ann. Rheum. Dis. 2008;67(2):270-272.
  36. Herregods N, Jaremko JL, Baraliakos X, et al. Limited role of gadolinium to detect active sacroiliitis on MRI in juvenile spondyloarthritis. (1432-2161 (Electronic)).
  37. Biffar A, Dietrich OF, Sourbron S FAU – Duerr H-R, Duerr HR FAU – Reiser M, Reiser MF FAU – Baur-Melnyk A, Baur-Melnyk A. Diffusion and perfusion imaging of bone marrow. (1872-7727 (Electronic)).
  38. Gašperšič N, Serša I, Jevtič V, Tomšič M, Praprotnik S. Monitoring ankylosing spondylitis therapy by dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Skeletal radiology. 2008;37(2):123-131.
  39. Sudol-Szopinska I, Jurik AG, Eshed I, et al. Recommendations of the ESSR Arthritis Subcommittee for the Use of Magnetic Resonance Imaging in Musculoskeletal Rheumatic Diseases. (1098-898X (Electronic)).
  40. Workie DW, Dardzinski BJ, Graham TB, Laor T, Bommer WA, O’Brien KJ. Quantification of dynamic contrast-enhanced MR imaging of the knee in children with juvenile rheumatoid arthritis based on pharmacokinetic modeling. Magnetic Resonance Imaging. 2004;22(9):1201-1210.
  41. Malattia C, Damasio MB, Basso C, et al. Dynamic contrast-enhanced magnetic resonance imaging in the assessment of disease activity in patients with juvenile idiopathic arthritis. Rheumatology. 2010;49(1):178-185.
  42. Hemke R, Nusman CM, van den Berg JM, et al. Construct validity of pixel-by-pixel DCE-MRI: Correlation with conventional MRI scores in juvenile idiopathic arthritis. European Journal of Radiology. 2017;94(Supplement C):1-5.
  43. Nusman CM, Lavini C, Hemke R, et al. Dynamic contrast-enhanced magnetic resonance imaging of the wrist in children with juvenile idiopathic arthritis. Pediatric Radiology. 2017;47(2):205-213.
  44. Hemke R, Lavini CF, Nusman CM FAU – van den Berg, et al. Pixel-by-pixel analysis of DCE-MRI curve shape patterns in knees of active and inactive juvenile idiopathic arthritis patients. (1432-1084 (Electronic)).
  45. Nusman CM, Hemke R, Lavini C, et al. Dynamic contrast-enhanced magnetic resonance imaging can play a role in predicting flare in juvenile idiopathic arthritis. European Journal of Radiology. 2017;88(Supplement C):77-81.
  46. Sudol-Szopinska I, Pracoń G. Diagnostic imaging of psoriatic arthritis. Part II: magnetic resonance imaging and ultrasonography. J Ultrason. 2016;16(65):163-174.
  47. Poggenborg RP, Ostergaard M, Terslev L. Imaging in Psoriatic Arthritis. (1558-3163 (Electronic)).
  48. Schwenzer NF, K+Âtter I, Henes JÂC, et al. The Role of Dynamic Contrast-Enhanced MRI in the Differential Diagnosis of Psoriatic and Rheumatoid Arthritis. American Journal of Roentgenology; 3/1/2010, 2010.
  49. Poggenborg RP, Wiell CF, Boyesen PF, et al. No overall damage progression despite persistent inflammation in adalimumab-treated psoriatic arthritis patients: results from an investigator-initiated 48-week comparative magnetic resonance imaging, computed tomography and radiography trial. (1462-0332 (Electronic)).
  50. Krasnokutsky S, Belitskaya-Levy IF, Bencardino JF, et al. Quantitative magnetic resonance imaging evidence of synovial proliferation is associated with radiographic severity of knee osteoarthritis. (1529-0131 (Electronic)).
  51. Anwander H, Cron GO, Rakhra K, Beaule PE. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty: A pilot study. Bone Joint Res. 2016;5(3):73-79.
  52. Riis RG, Gudbergsen H, Simonsen O, et al. The association between histological, macroscopic and magnetic resonance imaging assessed synovitis in end-stage knee osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage. 2017;25(2):272-280.
  53. Ballegaard C, Riis RG, Bliddal H, et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study. Osteoarthritis. Cartilage. 2014;22(7):933-940.
  54. Riis RG, Gudbergsen H, Henriksen M, et al. Synovitis assessed on static and dynamic contrast-enhanced magnetic resonance imaging and its association with pain in knee osteoarthritis: A cross-sectional study. Eur J Radiol. 2016;85(6):1099-1108.
  55. Kirkhus E, Bjornerud AF, Thoen JF, Johnston VF, Dale KF, Smith HJ. Contrast-enhanced dynamic magnetic resonance imaging of finger joints in osteoarthritis and rheumatoid arthritis: an analysis based on pharmacokinetic modeling. (0284-1851 (Print)).
  56. Sanz R, Marti-Bonmati LF, Rodrigo JL FAU – Moratal D, Moratal D. MR pharmacokinetic modeling of the patellar cartilage differentiates normal from pathological conditions. (1053-1807 (Print)).
  57. Marti-Bonmati L, Sanz-Requena R, Rodrigo JL, Alberich-Bayarri A, Carot JM. Glucosamine sulfate effect on the degenerated patellar cartilage: preliminary findings by pharmacokinetic magnetic resonance modeling. Eur Radiol. 2009;19(6):1512-1518.
  58. Jans L, De Coninck T, Wittoek R, et al. 3 T DCE-MRI assessment of synovitis of the interphalangeal joints in patients with erosive osteoarthritis for treatment response monitoring. Skeletal Radiol. 2013;42(2):255-260.
  59. Gait AD, Hodgson R, Parkes MJ, et al. Synovial volume vs synovial measurements from dynamic contrast enhanced MRI as measures of response in osteoarthritis. Osteoarthritis and Cartilage. 2016;24(8):6.
  60. Wenham CY, Balamoody S, Grainger AJ, et al. The responsiveness of novel, dynamic, contrast-enhanced magnetic resonance measures of total knee synovitis after intra-articular corticosteroid for painful osteoarthritis. Osteoarthritis Cartilage. 2014;22(10):1614-1618.
  61. Riis RGC, Henriksen M, Klokker L, et al. The effects of intra-articular glucocorticoids and exercise on pain and synovitis assessed on static and dynamic magnetic resonance imaging in knee osteoarthritis: exploratory outcomes from a randomized controlled trial. Osteoarthritis Cartilage. 2017;25(4):481-491.
  62. Swaminathan V, Parkes MJ, Callaghan MJ, et al. With a biomechanical treatment in knee osteoarthritis, less knee pain did not correlate with synovitis reduction. BMC Musculoskeletal Disorders. 2017;18(1):347.
  63. Kim IJ, Kim DH, Jung JY, et al. Association between bone marrow lesions detected by magnetic resonance imaging and knee pain in community residents in Korea. Osteoarthritis and Cartilage. 2013;21(9):1207-1213.
  64. Koster IM, Oei EH, Hensen JH, et al. Predictive factors for new onset or progression of knee osteoarthritis one year after trauma: MRI follow-up in general practice. Eur Radiol. 2011;21(7):1509-1516.
  65. Tanamas SK, Wluka AE, Pelletier JP, et al. Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology (Oxford). 2010;49(12):2413-2419.
  66. Lim YZ, Wang Y, Wluka A, et al. Are biomechanical factors, meniscal pathology, and physical activity risk factors for bone marrow lesions at the knee? A systematic review. Seminars in Arthritis and Rheumatism.43(2):187-194.
  67. Roemer FW, Kwoh C, Hannon M, et al. Can structural joint damage measured with MR imaging be used to predict knee replacement in the following year? Radiology. 2015;274(3):810-820.
  68. Nielsen FK, Egund N, Jorgensen A, Peters DA, Jurik AG. Assessment of subchondral bone marrow lesions in knee osteoarthritis by MRI: a comparison of fluid sensitive and contrast enhanced sequences. BMC Musculoskelet Disord. 2016;17(1):479.
  69. Budzik JF, Ding J, Norberciak L, et al. Perfusion of subchondral bone marrow in knee osteoarthritis: A dynamic contrast-enhanced magnetic resonance imaging preliminary study. Eur J Radiol. 2017;88(1872-7727 (Electronic)):129-134.
  70. Dyke JP, Synan M, Ezell P, Ballon D, Racine J, Aaron RK. Characterization of bone perfusion by dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography in the DunkinGÇôHartley guinea pig model of advanced osteoarthritis. Journal of Orthopaedic Research. 2015;33(3):366-372.
  71. Carpenter CR, Schuur JD, Everett WW, Pines JM. Evidence-based diagnostics: adult septic arthritis. Acad Emerg Med. 2011;18(8):781-796.
  72. Martin NT, Luna AA, Beltran LS, Gomez CM, Broncano CJ, Vilanova JC. Advanced MR Imaging Techniques for Differentiation of Neuropathic Arthropathy and Osteomyelitis in the Diabetic Foot. (1527-1323 (Electronic)).
  73. Fischer C, Preuss EM, Tanner M, et al. Dynamic Contrast-Enhanced Sonography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Preoperative Diagnosis of Infected Nonunions. Journal of Ultrasound in Medicine. 2016;35(5):933-942.
  74. Kim EY, Kwack KS, Cho JH, Lee DH, Yoon SH. Usefulness of Dynamic Contrast-Enhanced MRI in Differentiating Between Septic Arthritis and Transient Synovitis in the Hip Joint. American Journal of Roentgenology; 2/1/2012, 2012.
  75. Muller-Lutz A, Schleich C, Sewerin P, et al. Comparison of quantitative and semiquantitative dynamic contrast-enhanced MRI with respect to their correlation to delayed gadolinium-enhanced MRI of the cartilage in patients with early rheumatoid arthritis. J Comput Assist Tomogr. 2015;39(1):64-69.